Crystal data
$\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}$
Mo $K \alpha$ radiation
$M_{r}=380.44$
Monoclinic
$P 2_{1} / c$
$a=9.3028(10) \AA$
$b=8.5506(6) \AA$
$c=23.960$ (2) \AA
$\beta=97.636$ (8)
$V=1889.0(3) \AA^{3}$
$Z=4$
$D_{x}=1.338 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 4$ diffractometer $\theta / 2 \theta$ scans
Absorption correction: none
5750 measured reflections 4303 independent reflections 3450 reflections with
$I>2 \sigma(I)$
$R_{\text {int }}=0.017$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.116$
$S=1.048$
4303 reflections
324 parameters
$\theta_{\text {max }}=27.49^{\circ}$
$h=-1 \rightarrow 12$
$k=-1 \rightarrow 11$
$l=-31 \rightarrow 31$
3 standard reflections every 97 reflections intensity decay: <3\%
$\lambda=0.71073 \AA$
Cell parameters from 27 reflections
$\theta=5.15-12.53^{\circ}$
$\mu=0.196 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Rectangular block
$0.84 \times 0.68 \times 0.54 \mathrm{~mm}$ Colourless
$(\Delta / \sigma)_{\text {max }}=-0.007$ $\Delta \rho_{\max }=0.217 \mathrm{e}_{\AA^{-3}}$ $\Delta \rho_{\text {min }}=-0.238 \mathrm{e}^{-3}$
Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C)

All H atoms refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0656 P)^{2}\right.$ $+0.183 P$]
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Table 1. Selected torsion angles $\left(^{\circ}\right)$

$\mathrm{C} 12-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 15$	$4.0(2)$	$\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15$	$-57.7(2)$
$\mathrm{C} 8-\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 13$	$-19.1(2)$	$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 15-\mathrm{C} 14$	$-15.7(2)$
$\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14$	$46.0(2)$	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{C} 15-\mathrm{C} 8$	$41.5(2)$

Table 2. Hydrogen-bonding geometry $\left(\AA^{\circ}{ }^{\circ}\right)$

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \ldots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{O} 11^{\mathrm{i}}$	$1.01(2)$	$2.58(2)$	$3.470(2)$	$147(2)$
$\mathrm{C} 19-\mathrm{H} 19 \cdots \mathrm{O} 11^{\mathrm{ii}}$	$0.98(2)$	$2.45(2)$	$3.378(2)$	$159(2)$

Symmetry codes: (i) $1+x, y, z$; (ii) $-x, \frac{1}{2}+y, \frac{1}{2}-z$.
Data collection: XSCANS (Siemens, 1994). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXTLPC (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/PC. Geometrical calculations PARST (Nardelli, 1983b).

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia for research grant R\&D No. 190-9609-2801. KC thanks the Universiti Sains Malaysia for a Visiting Post Doctoral Fellowship.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: CF1196). Services for accessing these data are described at the back of the journal.

References

Barry, M. T. \& Toste, F. D. (1996). J. Am. Chem. Soc. 118, 63056306.

Chinnakali, K., Fun, H.-K., Sriraghavan, K. \& Ramakrishnan, V. T. (1998). Acta Cryst. C54. In the press.

Kumar, S., Chinnakali, K., Sivakumar, K., Fun, H.-K. \& Sriraghavan, K. (1997). Acta Cryst. C53, 1854-1855.

Maeda, M. (1984). In Laser Dyes: Properties of Organic Compounds for Dye Lasers. New York: Academic Press.
Nardelli, M. (1983a). Acta Cryst. C39, 1141-1142.
Nardelli, M. (1983b). Comput. Chem. 7, 95-98.
Parrish, J. A., Fitzpatrick, T. B., Tanenbaum, L. \& Pathak, M. A. (1974). New Engl. J. Med. 291, 206-209.

Sheldrick, G. M. (1990). SHELXTLPC Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1994). XSCANS Users Manual. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sriraghavan, K. (1998). PhD thesis, University of Madras, India. In preparation.

Acta Cryst. (1998). C54, 368-370

Diethyl 1-(3,4-Dichlorophenyl)-5-0xo-3-(2-thienyl)-2,2-pyrrolidinedicarboxylate

Jayanta Kumar Ray, ${ }^{a}$ Arindam Chakraborty, ${ }^{a}$
Sujtt Das Adhikari, ${ }^{a}$ Kandasamy Chinnakali ${ }^{b} \dagger$ and Hoong-Kun Fun ${ }^{b}$
${ }^{a}$ Department of Chemistry, Indian Institute of Technology, Kharagpur 721 302, India, and ${ }^{b} \mathrm{X}$-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia. E-mail: hkfun@usm.my

(Received 24 April 1997; accepted 13 November 1997)

Abstract

In the title molecule, $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{NO}_{5} \mathrm{~S}$, the pyrrolidine ring is in an envelope conformation. The dichlorophenyl and thiophene rings are planar. Of the two ethoxycarbonyl side chains, one is nearly planar but the other is distorted from planarity. The structure is stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and van der Waals interactions.

[^0]
Comment

γ-Lactams are not only important constituents of novel antibiotics (Nozaki et al., 1987), but are also key intermediates in the synthesis of five-membered heterocycles (Laskin \& Lechevalier, 1984). The crystal structure determination of the title compound, (I), a γ-lactam with gem-diethyl ester substituents was carried out in order to elucidate the molecular conformation.

(I)

A displacement ellipsoid plot of (I) with the atomnumbering scheme is shown in Fig. 1. The pyrrolidine ring is in an envelope conformation, with asymmetry parameter $\Delta C_{s}(\mathrm{C} 9)=0.024(2)($ Nardelli, 1983a). The deviation of the C 9 atom from the mean plane defined by atoms $\mathrm{N}, \mathrm{C} 7, \mathrm{C} 8$ and C 10 is 0.514 (3) A . The planes of the dichlorophenyl and thiophene rings define a dihedral angle of $107.3(1)^{\circ}$. The thiophene ring shows no sign of the disorder typical of related structures (Sivakumar et al., 1995a,b; Ray et al., 1997) and exhibits normal $\mathrm{C}-\mathrm{C}$ bond lengths in the thiophene ring.

Fig. 1. The structure of the title compound showing 50% probability displacement ellipsoids and the atom-numbering scheme.

The mean plane through the pyrrolidine ring makes dihedral angles of $58.2(1)$ and $59.9(1)^{\circ}$ with the thiophene and phenyl rings, respectively. One ethoxycarbonyl side chain [$\mathrm{C} 18(=\mathrm{O} 4)-\mathrm{O}-\mathrm{C} 19-\mathrm{C} 20]$ is nearly planar, but the other is distorted from planarity [C15-03-C16-C17-153.9(5) ${ }^{\circ}$] due to steric interactions. Slight disorder of the C17 atom cannot be
excluded given its large U_{11} value [0.211 (8) \AA^{2}]. The two ethoxycarbonyl planes make angles of 110.1 (1) and $111.8(2)^{\circ}$ with the phenyl-ring plane, and angles of 32.4 (2) and $76.8(2)^{\circ}$ with the thiophene-ring plane. The crystal structure is stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) and van der Waals interactions.

Experimental

The title compound was synthesized directly from arylaminomalonates and arylacryloyl chloride in the presence of base (Ray et al., 1994). Single crystals were grown by slow evaporation from a 2-propanol solution of the compound.

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{NO}_{5} \mathrm{~S}$
$M_{r}=456.32$
Triclinic
$P \overline{1}$
$a=10.441(1) \AA$
$b=10.772$ (1) \AA
$c=11.079(1) \AA$
$\alpha=87.95(1)^{\circ}$
$\beta=75.16(1)^{\circ}$
$\gamma=62.90(1)^{\circ}$
$V=1067.5(2) \AA^{3}$
$Z=2$
$D_{x}=1.420 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Siemens $P 4$ diffractometer
$\theta / 2 \theta$ scans
Absorption correction:
empirical ψ scans
(Siemens, 1994)
$T_{\text {min }}=0.814, T_{\text {max }}=0.877$
5718 measured reflections
4910 independent reflections
3078 reflections with
$I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.141$
$S=1.015$
4909 reflections
339 parameters
All H atoms refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0435 P)^{2}\right.$
$+0.5622 P]$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=27.50^{\circ}$
$h=-1 \rightarrow 13$
$k=-12 \rightarrow 13$
$l=-14 \rightarrow 14$
3 standard reflections every 97 reflections intensity decay: <3\%
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.31 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.36 \mathrm{e}^{-3}$
Extinction correction: SHELXL93
Extinction coefficient: 0.009 (2)

Scattering factors from International Tables for Crystallography (Vol. C)

$$
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
$$

Table 1. Selected geometric parameters $\left({ }^{A},{ }^{\circ}\right)$

$\mathrm{S}-\mathrm{C} 14$	$1.696(4)$	$\mathrm{C} 7-\mathrm{C} 8$	$1.503(4)$
$\mathrm{S}-\mathrm{Cl1}$	$1.721(3)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.523(4)$
$\mathrm{O}-\mathrm{C} 7$	$1.214(3)$	$\mathrm{C} 9-\mathrm{C} 11$	$1.496(4)$
$\mathrm{O} 2-\mathrm{Cl5}$	$1.189(3)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.574(3)$

$\mathrm{O} 3-\mathrm{C} 15$	$1.313(3)$	$\mathrm{C} 10-\mathrm{C} 18$	$1.525(3)$
$\mathrm{O} 3-\mathrm{C} 16$	$1.461(4)$	$\mathrm{C} 10-\mathrm{C} 15$	$1.535(4)$
$\mathrm{O} 4-\mathrm{C} 18$	$1.194(3)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.358(4)$
$\mathrm{O} 5-\mathrm{C} 18$	$1.320(3)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.412(4)$
$\mathrm{O} 5-\mathrm{C} 19$	$1.467(4)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.346(5)$
$\mathrm{N}-\mathrm{C} 7$	$1.377(4)$	$\mathrm{C} 16-\mathrm{C} 17$	$1.470(7)$
$\mathrm{N}-\mathrm{C} 6$	$1.434(3)$	$\mathrm{C} 19-\mathrm{C} 20$	$1.489(7)$
$\mathrm{N}-\mathrm{C} 10$	$1.470(3)$		
$\mathrm{C} 14-\mathrm{S}-\mathrm{C} 11$	$92.3(2)$	$\mathrm{N}-\mathrm{C} 10-\mathrm{C} 15$	$110.2(2)$
$\mathrm{C} 15-\mathrm{O} 3-\mathrm{C} 16$	$118.0(3)$	$\mathrm{C} 18-\mathrm{C} 10-\mathrm{C} 15$	$112.1(2)$
$\mathrm{C} 18-\mathrm{O} 5-\mathrm{C} 19$	$116.0(2)$	$\mathrm{N}-\mathrm{C} 10-\mathrm{C} 9$	$101.2(2)$
$\mathrm{C} 7-\mathrm{N}-\mathrm{C} 10$	$113.0(2)$	$\mathrm{C} 18-\mathrm{C} 10-\mathrm{C} 9$	$109.9(2)$
$\mathrm{C} 6-\mathrm{N}-\mathrm{C} 10$	$125.6(2)$	$\mathrm{C} 15-\mathrm{C} 10-\mathrm{C} 9$	$111.3(2)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{N}$	$119.2(2)$	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{C} 9$	$129.3(2)$
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N}$	$124.4(3)$	$\mathrm{C} 12-\mathrm{C} 11-\mathrm{S}$	$110.3(2)$
$\mathrm{N}-\mathrm{C} 7-\mathrm{C} 8$	$108.2(2)$	$\mathrm{C} 9-\mathrm{C} 11-\mathrm{S}$	$120.4(2)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$104.4(2)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{Cl} 3$	$112.8(3)$
$\mathrm{C} 11-\mathrm{C} 9-\mathrm{C} 8$	$115.4(2)$	$\mathrm{C} 14-\mathrm{C} 13-\mathrm{C} 12$	$113.1(4)$
$\mathrm{C} 8-\mathrm{C}-\mathrm{C} 10$	$103.0(2)$	$\mathrm{C} 13-\mathrm{C} 14-\mathrm{S}$	$111.5(3)$
$\mathrm{N}-\mathrm{C} 10-\mathrm{C} 18$	$111.7(2)$		
$\mathrm{C} 10-\mathrm{N}-\mathrm{C} 7-\mathrm{C} 8$	$4.0(3)$	$\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{N}$	$30.8(3)$
$\mathrm{N}-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$17.0(3)$	$\mathrm{N}-\mathrm{C} 10-\mathrm{C} 15-\mathrm{O} 2$	$98.5(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-29.4(3)$	$\mathrm{N}-\mathrm{C} 10-\mathrm{C} 18-\mathrm{O} 4$	$-17.0(4)$
$\mathrm{C} 7-\mathrm{N}-\mathrm{C} 10-\mathrm{C} 9$	$-22.2(3)$		

Table 2. Hydrogen-bonding geometry $\left(A^{\circ},^{\circ}\right)$

D-H. \cdot A	D-H	H...A	D. . A	D-H. . . A
$\mathrm{C} 4-\mathrm{H} 4 . \mathrm{O} \mathrm{Ol}^{\text {i }}$	1.00 (3)	2.57 (3)	3.366 (3)	137 (3)
C12-H12 . $\mathrm{O}^{\text {ii }}$	0.91 (4)	2.52 (4)	3.351 (5)	153 (3)
$\mathrm{Cl} 4-\mathrm{H14} \cdots \mathrm{Ol}^{\text {iii }}$	0.92 (5)	2.58 (5)	3.433 (6)	154 (4)

Symmetry codes: (i) $2-x,-y, 1-z$; (ii) $1-x,-y, 2-z$; (iii) $x-1, y, z$.
The title structure was solved by direct methods and refined by full-matrix least-squares techniques. All H atoms were located from a difference Fourier map and refined isotropically.

Programs used for data collection, cell refinement and data reduction: XSCANS (Siemens, 1994); for structure solution and molecular graphics: SHELXTL/PC (Sheldrick, 1990); for structure refinement: SHELXL93 (Sheldrick, 1993); for geometrical calculations: PARST (Nardelli, 1983b).

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia for research grant R\&D No. 190-9609-2801. KC thanks the Universiti Sains Malaysia for a Visiting Post Doctoral Fellowship.

[^1]
References

Laskin, A. I. \& Lechevalier, H. A. (1984). In CRC Handbook of Microbiology, 2nd ed. Boca Raton, Florida: CRC Press, Inc.
Nardelli, M. (1983a). Acta Cryst. C39, 1141-1142.
Nardelli, M. (1983b). Comput. Chem. 7, 95-98.
Nozaki, Y., Katayama, N., Tsubotani, S., Harada, S., Okazaki, H. \& Nakao, Y. (1987). Nature, 325, 179-180.
Ray, J. K., Roy, B. C., Chinnakali, K., Razak, I. A. \& Fun, H.-K. (1997). Acta Cryst. C53, 1622-1624.

Ray, J. K., Sami, I., Kar, G. K., Roy, B. C. \& Brahma, N. K. (1994). Bioorg. Med. Chem. 2, 1417-1419.
Sheldrick, G. M. (1990). SHELXTLPC User Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELX93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Siemens (1994). XSCANS Users Manual. Version 2.1. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sivakumar, K., Fun, H.-K., Ray, J. K., Roy, B. C. \& Nigam, G. D. (1995a) Acta Cryst. C51, 1942-1944.
Sivakumar, K., Fun, H.-K., Ray, J. K., Roy, B. C. \& Nigam, G. D. (1995b) Acta Cryst. C51, 2444-2446.

Acta Cryst. (1998). C54, 370-371

2-Acetyl-5,8-dihydronaphthalen-1-ol

Kandasamy Chinnakall, ${ }^{a} \dagger$ Hoong-Kun Fun, ${ }^{a}$ Kamaraj Sriraghavan ${ }^{b}$ and Vaylakkavoor T. Ramakrishnan ${ }^{c}$
${ }^{a} X$-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ${ }^{b}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and ${ }^{\text {c Department of }}$ Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India. E-mail: hkfun@usm.my

(Received 19 August 1997; accepted 4 November 1997)

Abstract

The heavy-atom skeleton of the title molecule, $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2}$, is planar to within ± 0.023 (2) \AA and an O $\mathrm{H} \cdots \mathrm{O}$ intramolecular hydrogen bond contributes to this planarity.

Comment

Dihydronaphthalene derivatives are widely used as intermediates in the synthesis of several polycyclic phenols which are useful antifibrillatory agents, disinfectants and water softeners (Hauck et al., 1977). Furthermore, hydroxy-ketone derivatives of naphthalene are useful in synthesizing the sub-units of daunomycinone and adiramycin, which are important anticancer drugs (Crouse et al., 1981).

The title molecule, (I), as a whole, is planar within ± 0.023 (2) \AA. The planarity is stabilized by an O $\mathrm{H} \cdots \mathrm{O}$ intramolecular hydrogen bond involving atoms O 1 and $\mathrm{O} 2[\mathrm{O} 1 \cdots \mathrm{O} 2.546(2), \mathrm{H} 1 \mathrm{O} 2 \cdots \mathrm{O} 1.65$ (2) \AA and $\left.\mathrm{O} 2-\mathrm{H} 1 \mathrm{O} 2 \cdots \mathrm{O} 154(2)^{\circ}\right]$. In the dihydrobenzene ring, the $\mathrm{C}_{s p^{2}}-\mathrm{C}_{s p^{3}}$ distances $\mathrm{C} 5-\mathrm{C} 6[1.481$ (2) \AA] and C9-C10 11.491 (2) \AA] are longer than the C6-C7 [1.465 (2) A] and C8-C9 [1.461 (3) A] distances because of the steric interactions caused by the planarity of the dihydrobenzene ring. The C5-C6-C7 [115.1 (2) ${ }^{\circ}$] and $\mathrm{C} 8-\mathrm{C} 9-\mathrm{Cl} 0\left[115.5(2)^{\circ}\right]$ angles are also widened
\dagger On leave from: Department of Physics, Anna University, Chennai 600 025, India.

[^0]: \dagger On leave from Department of Physics, Anna University, Chennai 600 025, India.

[^1]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: MU1338). Services for accessing these data are described at the back of the journal.

